Nitrogen GATA factors participate in transcriptional regulation of vacuolar protease genes in Saccharomyces cerevisiae.

نویسندگان

  • J A Coffman
  • T G Cooper
چکیده

The expression of most nitrogen catabolic genes in Saccharomyces cerevisiae is regulated at the level of transcription in response to the quality of nitrogen source available. This regulation is accomplished through four GATA-family transcription factors: two positively acting factors capable of transcriptional activation (Gln3p and Gat1p) and two negatively acting factors capable of down-regulating Gln3p- and/or Gat1p-dependent transcription (Dal80p and Deh1p). Current understanding of nitrogen-responsive transcriptional regulation is the result of extensive analysis of genes required for the catabolism of small molecules, e.g., amino acids, allantoin, or ammonia. However, cells contain another, equally important source of nitrogen, intracellular protein, which undergoes rapid turnover during special circumstances such as entry into stationary phase, and during sporulation. Here we show that the expression of some (CPS1, PEP4, PRB1, and LAP4) but not all (PRC1) vacuolar protease genes is nitrogen catabolite repression sensitive and is regulated by the GATA-family proteins Gln3p, Gat1p, and Dal80p. These observations extend the global participation of GATA-family transcription factors to include not only well-studied genes associated with the catabolism of small nitrogenous compounds but also genes whose products are responsible for the turnover of intracellular macromolecules. They also point to the usefulness of considering control of the nitrogen-responsive GATA factors when studying the regulation of the protein turnover machinery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interplay between the transcription factors acting on the GATA- and GABA-responsive elements of Saccharomyces cerevisiae UGA promoters.

γ-Aminobutyric acid (GABA) transport and catabolism in Saccharomyces cerevisiae are subject to a complex transcriptional control that depends on the nutritional status of the cells. The expression of the genes that form the UGA regulon is inducible by GABA and sensitive to nitrogen catabolite repression (NCR). GABA induction of these genes is mediated by Uga3 and Dal81 transcription factors, wh...

متن کامل

Dal81 Regulates Expression of Arginine Metabolism Genes in Candida parapsilosis

Fungi can use a wide variety of nitrogen sources. In the absence of preferred sources such as ammonium, glutamate, and glutamine, secondary sources, including most other amino acids, are used. Expression of the nitrogen utilization pathways is very strongly controlled at the transcriptional level. Here, we investigated the regulation of nitrogen utilization in the pathogenic yeast Candida parap...

متن کامل

Role of GATA factor Nil2p in nitrogen regulation of gene expression in Saccharomyces cerevisiae.

We have identified the product of the NIL2 gene of Saccharomyces cerevisiae which contains a zinc finger region highly homologous to those of the GATA factors Gln3p and Nil1p as an antagonist of Nil1p and to a lesser extent of Gln3p. The expression of many nitrogen-regulated genes of Saccharomyces cerevisiae requires activation by GATA factor Gln3p or Nil1p and is prevented by the presence of g...

متن کامل

Heterologous expression implicates a GATA factor in regulation of nitrogen metabolic genes and ion homeostasis in the halotolerant yeast Debaryomyces hansenii.

The yeast Debaryomyces hansenii has a remarkable capacity to proliferate in salty and alkaline environments such as seawater. A screen for D. hansenii genes able to confer increased tolerance to high pH when overexpressed in Saccharomyces cerevisiae yielded a single gene, named here DhGZF3, encoding a putative negative GATA transcription factor related to S. cerevisiae Dal80 and Gzf3. Overexpre...

متن کامل

A family of ammonium transporters in Saccharomyces cerevisiae.

Ammonium is a nitrogen source supporting growth of yeast cells at an optimal rate. We recently reported the first characterization of an NH4+ transport protein (Mep1p) in Saccharomyces cerevisiae. Here we describe the characterization of two additional NH4+ transporters, Mep2p and Mep3p, both of which are highly similar to Mep1p. The Mep2 protein displays the highest affinity for NH4+ (Km, 1 to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 179 17  شماره 

صفحات  -

تاریخ انتشار 1997